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THERMAL INTERACTION OF TWO STREAMS 

IN BOUNDARY-LAYER FLOW SEPARATED BY A PLATE 
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(Received 6 August 1970 und in revisedform 18 November 1970) 

Abstract-The problem of heat exchange between two fluid streams in boundary layer flow separated 
by a flat plate is considered. A general analysis applicable to cocurrent or countercurrent, laminar or 
turbulent flow is presented. An exact solution for the temperature distribution and the heat transfer along 
the plate is obtained for the special case of constant property, cocurrent, inviscid flow. In the less&trictive 
case of constant property laminar or turbulent flow, the wall temperature and heat flux are predicted 
using the method of superposition for which results of a desired degree of accuracy are possible. For the 
most general case of variable physical properties the finite difference solution of the momentum and 
energy equations in von Mises form is indicated. Finally, some illustrative results for cocurrent, constant 
property, laminar flow in the streams are reported. It is shown that heat exchange analyses which neglect 

the thermal interaction between the fluid streams could be in serious error. 
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NOMENCLATURE 

parameter defined as a/u, ; 
thickness of the plate ; 
constant in equation (18) ; 
specific heat at constant pressure ; 
parameter defined as (k,a;f)i[kla;3 

+ k&l = (kdb) (Wk,); 
parameter defined as (k,/b) (kla;f 
+ k2a;+),‘(k,k2a;f): 
parameter defined as LJ l(a,ja2)f ; 
local heat-transfer coefficient ; 
thermal conductivity ; 
plate length ; 
parameter defined as 
CGWr”,‘(u 2cov~)m2/C~k~PJ1’(~~mvz))a2]; 
exponent in equation (18) ; 
exponent in equation (18); 
parameter defined as 

C,(W,)(u,,iY,)PJ;‘; 
Prandtl number, pcdk ; 
heat flux ; 
local Reynolds number. u,x/v ; 
temperature slope. dei/dy, on kth sub- 
interval of plate ; 
temperature ; 

u. 
V. 

X. 

X?. 

Y. 

velocity in the x-direction ; 
velocity in the y-direction ; 
coordinate in the direction of flow ; 
dimensionless coordinate defined as 
~~~~~~~~~ for cocurrent flow xt = xf 
and for counterflow xz = Re,, L - x7 ; 
location of the far side of thejth sub- 
interval as measured in the i coordinate 
system ; 
coordinate transverse to the direction 
of flow ; 
thermal diffusivity, k/pc,; 
exponent in equation (18); 
exponent in equation (18); 
subinterval length ; 
eddy diffusivity of heat ; 
eddy diffusivity of momentum; 
parameter defined as (crx/u,)f- ; 
dimensionless temperature defined as 

(T - T2m)/(T~m - T,,); 
dynamic viscosity ; 
kinematic viscosity ; 
density ; 
position along plate surface ; 
stream function ; 
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7, shear stress. 

Subscripts 

1;., 
refers to either stream 1 or 2 ; 
based upon plate length ; 

Q. based upon uniform heat flux boundary 
condition ; 

T. based upon uniform temperature 
boundary condition ; 

x, based upon distance from leading edge ; 
W. refers to the wall ; 
1, refers to stream 1 ; 
2, refers to stream 2 ; 
cm. refers to the free stream. 

INTRODUCTION 

APPLICATIONS of heat exchange between two 
fluid streams separated by a plane wall in 
boundary layer flow are extremely common in 
practice, yet fundamental analysis of the trans- 
port process occurring in such situations has 
received little attention. Basic models of heat 
transfer across a solid wall consider only one 
stream at a time, usually under the assumption 
of a constant wall temperature or heat flux 
and sometimes for a prescribed wall temperature 
or heat flux [l, 21. The primary purpose of this 
paper is to examine the validity and accuracy 
of such heat transfer predictions, i.e. those which 
neglect the interaction between the streams. 

Of particular concern for the analysis and 
design of heat transfer equipment is the overall 
heat-transfer coefficient which is the addition 
in series of individu~ thermal resistances, each 
measured or predicted in the absence of the 
resistance in the other stream. The overall heat- 
transfer coefficient is given by [3] 

U = l&l/h, + b/k, f l/h,]. (1) 

In essentially all practical heat transfer processes 
the local heat-transfer coefficients can logically 
be expected to vary with surface position. The 
temperature at all points along the solid~uid 
interface must therefore also vary even though 
the free stream temperatures remain constant. 
Traditionally~ the ~uipme~t designer would 

select independent film coe~cient correlations 
h,(x) and h,(x), and then use equation (1) to 
calculate the local heat flux 

q(x) = W) (r, xi - r, ,). (2) 

As will be shown later on, this procedure leads 
to error since the correlations h,(x) and h2(x) 
seldom (if ever) are applicable to the surface 
temperature variations actually en~untered in 
the given piece of equipment. The main theme 
running through the remaining sections of this 
paper is that the traditional practice of neglect- 
ing the interaction between the fluid streams 
leads to error in engineering analysis and design 
and the work presented in this report is con- 
cerned with ascertaining this error. (In mass- 
transfer operations there is the analogous 
practice of adding interphase resistances in 
defining an overall mass-transfer coefficient. 
Here too. as pointed out in [4].* such practice 
is not always valid.) 

The problem is formulated in general terms 
and several fluid models are considered: an 
inviscid fluid, a constant property viscous fluid. 
and a variable property viscous fluid. For a 
range of parameters of interest, heat-transfer 
rates for the constant fluid property model are 
compared to the corresponding rates obtained 
by neglecting the interaction between the 
streams. 

A review of literature has failed to reveal any 
studies dealing with the problem. The similarity 
solution for laminar flow reported by Kuznetsov 
[.5] is a limiting case of the more general 
problem investigated in this paper. The case 
studied by Kuznetsov, where one surface of the 
plate is maintained at a constant temperature. 
corresponds physically to the case of in~nitely 
large heat-transfer coefhcient on that surface. 

PHYSICAL MODEL AND 
FORMULATION OF PROBLEM 

A schematic description of the system con- 

..___ _-. _~ .._.. -.~ -.....-. 
* This reference was brought to the authors’ attention by 

one of the reviewers. 
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sisting of two streams. either of which is in 
laminar or turbulent flow, is given in Fig. 1. 
The streams designated by 1 and 2 are shown 
in cocurrent flow in Fig. la and in counterflow 
in Fig. lb. The flow and heat transfer are assumed 
to be steady, two dimensional, with negligible 

Y, - 
(0) f 

- 

uzm I.xz 
- 

(b) t-f,, 
- 

zu 
-2- 
- 

FIG. 1. Schematic diagram of physical models considered: 
(a) Cocurrent flow; (b) Counterflow. 

viscous heat dissipation and zero pressure 
gradients. The initial velocity and temperature 
for either stream are taken to be uniform, and 
conduction in the plate is considered to be 
one-dimensional, in the transverse direction 
only. Further. assuming that the conventional 
boundary layer approximations are applicable 
to the present problem, the conservation equa- 
tions of mass momentum and energy for either 
stream are written respectively as 

a(Piui) + Gi”if _ 0 

axi 8Yi * 
(3) 

and 

= 6 
[ 

(k + PiCpiEh, j) 2 
,1 

(5) 
I 

with i = 1.2. The initial. boundary. and interface 
conditions are 

Ui = Uim at Xi = 0. (6a) 

vi = ~4~ = 0 at yi = 0, (6b) 

Ui -+ Uia, as yi + X. (64 

z = 7;, at xi = 0. (7a) 

T, = &, at yi = 0. (7b) 

Ti -+ Tm as yi + Cr,. (74 

and 

= (kvib) [G&,) - L&,)1. (74 

In the last expression. xp = x1 for cocurrent 
flow. and x2 = (L - x1) for countertlow. 

There is no possibility of obtaining a similarity 
solution of the conservation equation (3)(5) 
with the boundary conditions (6, 7) because of 
the interaction between the two streams. In 
principle. a unite-difference numerical solution 
can be obtained as indicated later in connection 
with the variable property fluid model. 

INVISClD CONSTANT PROPERTY FLOW MODEL 

Considerable insight into the heat transfer 
process can be obtained by assuming inviscid. 
constant property flow in both streams. Physic- 
ally, this means that the velocity boundary 
layer is much thinner than the temperature 
boundary layer. The temperature dist~bution 
to a good approximation can then be predicted 
on the assumption that in each fluid region. the 
velocity is everywhere equal to the respective 
free stream velocity. The boundary-layer equa- 
tions (3H5) then simplify to the following 
form : 

/ a?: 
(8) 
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This model would apply to cases of heat 
transfer where the Prandtl number is much less 
than 1.0 (Il. 61, however. the utility of the model 
in the past has been that it yields a closed form 
solution and predicts correct trends. It has been 
demonstrated that in similar mass-transfer 
problems the inviscid flow theory is equivalent 
to the penetration film theory [7]. 

A mathematical problem analogous to the 
one defined by equation (8) with the boundary 
conditions (7) has already been solved. Omitting 
all of the details. one can show that for the case 
of cocurrent flow. the temperature distributions 
in the two streams are given by [S] 

k2Q2 
O,(Xl.Y,) = d 1 -I- fi. 

i ( 1 1 1 

and 

8,(x,, y2) = g(erfc LKJ - exp (gzv2 + gZ) 

x erfc [(y,/XJ + g2C2]f. W) 

By setting y , = y, = 0 in equations (9) and (10). 
and making use of the identities glll = g& 
= gl and q1 = - q2 E q. one obtains the local 
wall heat flux 

qiCUW2 m - T1 ,)I = exp (g2C2) erfc (g0 (11) 

and the local wall temperature difference 

@,(x,.0) - @,(x,.0) = exp(g2~2)erfc(g~). (12) 

As expected. the dimensionless heat flux [the 
left-hand side of (111 is just equal to the dimen- 
sionless temperature difference. 

If the convective heat-transfer coefficient 
hi(xi) is defined in the conventional way. i.e. 

it follows from equations (9) and (10) that the 

heat-transfer coefficients are given by 

Mx,) = 

exp(gX?)erfc(g&) 

and 

kib) exp k&Z?) erfc (g212) 
“(“) = dfl - exp {g$$ erfc (g&f] (15) 

Examination of equations (14) and (15) shows 
that the heat-transfer coefficients at the two 
interfaces are affected by the thermal interaction 
between the two streams as well as the wall 
through the parameters d, gl, g2 and k,/h. 

VISCOUS CONSTANT PROPERTY FLOW MODEL 

Assuming constant fluid properties and tem- 
perature independent eddy diffusivity, the energy 
equation (5), becomes linear, and consequently 
the method of superposition can be used to 
express the local wall heat flux. Derivation 
of the superposition method is not presented 
here (see [I] and [2]), but is should be noted 
that the method is mathematically rigorous. 
Thus, following the method of superposition, 
wall heat fluxes in regions 1 and 2 are written 
respectively as 

XI 

41(x,) = 
s 

ML x1 

0 

+ 

and 

42(x2) = ~M<.x,)(~~di 
0 

where h,(t, Xi) denotes the heat-transfer co- 
efficient at xi caused by a discontinuity in wall 
temperature (finite-sized or in~nitesimal) occur- 
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ring at 0 < t < Xi; and Aq,,j denotes the 
magnitude the jth finite-sized wall temperature 
discontinuity. If the quantity [qa, - TJx)] is 
a continuous function of position for x > 0, 
which is the situation in the present problem, 
the summations in equations (16) and (17) are 
identically zero. The following analysis employs 
equations (16) and (17) to determine the tem- 
perature and heat flux distributions along the 
wall. 

In many physically important problems h(c, x) 
can be expressed as [9] 

h(x, 5) = C(k/x) ReyPP [l - (Qx)~]~ (18) 

where the constants C, m, n, y and /3 are given in 
Table 1 for several flow situations. 

Table 1. Constants used in equation (18) for various flow 
situations [9] 

C ~Bmn 

(1) Laminar flow, Pr > 1 @332 3 -f f 

(2) Turbulent flow, Pr > 1 CO29 & -6 $ 

f 
) 

(3) Laminar flow of liquid 
metals, u = u, @564 1 -+ f $ 

Substituting equation (18) into equations 
(16) and (17) and realizing that wall temperature 
is continuous, we have that 

(19) 

(20) 

Substituting equations (19) and (20) into the 
interface conditions (7d) and introducing the 
dimensionless variables 

x: = (a,,~,lv,)~ x5 = (a,,x,/v,); 

& = (& - G,)/(T,, - T,,) (21) 

yields 

- [M(xY)’ -“‘/(x:)1 -m*] 5 

x [ 1 - (5/~;)“]~’ (d&jdc) dS 

= jr [l - (Qx:)“]~’ (dt7,jd<) d< 

and * 

(22) 

[P/(x:)’ -y 1 [l - (</x:)“]D’ 

x (de,/dt)dr = Mx;) - e,(x:). (23) 

It is noted that for cocurrent flow x’: = x7 and 
for counterflow xz = Re - x:. 

Solution of equations {ii) and (23) is accom- 
plished in the following manner. The interval 
0 < x: < Re,,, is broken up into N subintervals 
of length &, which are sufficiently small, so 
that on every subinterval the derivatives dei/dl 
may be taken as constants ([l], p. 182). It is 
clear that such an approximation becomes in- 
creasingly accurate as subinterval size is reduced. 
Letting si. k denote d&/d< on the kth subinterval, 

FIG. 2. Illustration of the notation used in the constant 
fluid property analysis. 

(k= l,... , IV), equations (22) and (23) can then 
be rewritten as 2N linear algebraic equation 
whose solution yields the 2N quantities Si,k: 
Referring to Fig. 2 for the indexing system, the 
two algebraic equations for the position x:,j are 
thus 

- [M(x~,j)‘-m’/(X~,t)l -mz]S s2.k “t” 
4 x5, * -6, 

x [I - (5/~;,,)“]~~ d{ 
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and 

i XT. k 

[P/(x:)‘-“‘] -f Sl,k 

k=l 
f [ 1 - (tfIXT,j)Y’]p’ d5 

With Si,k known, the wall temperature at the 
general position xt j is given by 

i 
e,(x:,j) = 1 + C Sl,kbk* (264 

VARIABLE PROPERTY VISCOUS FLOW MODEL 

When thermophysical properties are state 
dependent, solution to the problem can only be 
obtained by solving simultaneously equations 
(3H5). As a first step in such a solution, equations 
(4) and (5) are simplified by employing the von 
Mises transformation [lo] obtain respectively 

and and 

btxt,t) = i s,, kdk. 
k=q 

In equations (24H26) t = j, 4 = 1, and Xt,j = 
x7, j for cocurrent flow, while for counterflow! 
t = j $- 1, q = N and XT. i+ 1 = Re,,, - XT. k 

(30) x~ 
Heat flux is obtained from the dimensionless 
form of equation (7d). 

where tii is the stream function, taken to be zero 

By assuming that the flow is cocurrent and 
at the plate surfaces, and defined so that 

that the same type of flow exists on each side 
of the plate, it can be shown from equations 
(24) and (25) that 

u, _ Pim a+i 
I 

u, = -Pica a$i and 

Pi aYi ’ pi axi’ 
(31) 

j-l 

M(P/xfl-m) c S1.k :J” [l - (Qx~)‘]~ d5 + 8,(x;_ J - Q,(xj*_ i) 

S 1,j = 

k=l w-1 

-aj - M(6, + (P/x; ’ -“) j; [l - (Qxr)‘]fi d<) 
xf_ , 

(27) 

and 

s 2,j = -sl.j!M. 
(28) 

From a computational standpoint, the solution 
is simpler for the cocurrent than for the counter- 
flow flow configuration. The simplification is 
due to the fact that the slopes si,k can be com- 
puted recursively, i.e. starting at j = 1 with the 
conditions 19,(x$) = 1 and 0,(x:) = 0. the si,j 
can be calculated for all successive j’s, while a 
matrix inversion is required when equations (24) 
and (25) are used for counterflow. 

It is noted that the continuity equation (3) 
is now automatically satisfied. Equations (29) 
and (30) are subject to the following boundary 
and interface conditions : 

as $i + Oc : T(xi7 $i) ---$ Tm7 

and Ui(Xi, $i) + Uim* (32a) 

at xi = 0: T(O, $i) = Tm. 

and u,(O, tii) = uioo. 

at tii = 0: T(x, 0) = LrJxi). 

(32b) 

(32~) 
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The interface conditions corresponding to equa- 
tion (7d) have to be treated carefully, since, 
under the von Mises transformation, the con- 
tinuity of the conductive fluxes, embodied in 
the first part of equation (7d) and expressed as 

is seen to be trivial because 

%IJI,=o = U,\Jr& = 0. 

This difficulty is removed however, by applying 
L’Fi6pital’s rule with the result 

Pzm VWI)l*,=o ?!JI(XI)1LWZ aT1 -~ 
PIm (~2P*)IJI*=o x rW2(~2)~W, de1 $2=o 

8% =- 
a+ 

(34) 
2 Jl*=o* 

The additional requirement, corresponding to 
the latter part of equation (7d), is transform 
into 

(UN I?-‘&,) - TI&I)] 

- +wl)lZi z. x lim 
03 $1-0 

[ 

u,(x,, +I) [T& $1) - T,(x,,O)l 

$1 
1. (35) 

On physical grounds, a limit of the bracketed 
quantity must exist if the rate of heat transfer at 
the wall is finite. 

Equations (29)-(35) completely define the 
flow and heat transfer in regions 1 and 2. A 
numerical finite difference solution of an ana- 
logous one-region problem has been obtained 
in [ll]. 

RESULTS .&ND DISCUSSION 

As an illustration, the wall temperature and 
heat flux variation along the plate are predicted 
for constant property, cocurrent, laminar flow 
of streams 1 and 2 using equations (27) and (28). 
The appropriate constants C, m, n, /I and y for 
fluids with 1 < Pr < 15 are given in Table 1. 
Inspection of equations (22) and (23) reveals 
that the wall temperature distribution depends 
on the dimensionless parameters M. P and XT. 
Physically, the parameter M is a measure 
of the heat-transfer conductance of stream 2 
compared to stream 1, and the parameter P is 
a measure of the heat-transfer conductance of 
stream 1 compared with that of the plate. The 
dimensionless distance xf is just the local 
Reynolds number in stream 1 based on x1 as 
the characteristic dimension. 

Typical variation of the local wall tempera- 
ture is shown in Fig. 3. It is noted that for any 
value of the parameter &f, a decrease in para- 
meter P and/or an increase in Re,, results in 
a definite limit of Bi,,,. It can be proven that 
this limit is given by l/(1 + M). 

The variation of the dimensionless local 
heat flux is shown in Fig. 4. For fixed parameters 
P and M heat-transfer rate decreases as Rex, 
is increased, an expected result since the laminar 
boundary layer becomes thicker and increases 
the resistance to heat transfer. All curves in 
Fig. 4 approach unity as Rex, -+ 0. This behavior 
is a consequence of neglecting axial heat con- 
duction in the energy equation (5). 

For a given P and Re,,. an increase in M 
results in an increased heat flux. Such behavior 
is expected considering the physical significance 
of that parameter. However, when iV is already 
large, most of the resistance to heat transfer is 
in stream 1 and the plate so that further increase 
in M has little effect upon heat transfer. This 
is demonstrated in Fig. 4 by the closeness of 
the results for M = 10 and 100. Furthermore, 
from the physical interpretation of P. it is also 
evident that large P implies large heat transfer. 
The two dashed curves of Fig. 4, representing 
heat transfer predicted by the inviscid flow 
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---_ - - _ z----m. 

M =I- 

&f =,*---- 

M=lOO--- 

10’ 10' 10” 

ffe, 
FE. 3. Local wall temperatures for constant property fluids in laminar, cocurrent flow. 

model, are obtained from equation (It) after ing viscous results when P is large and in the 
expressing & in terms of the parameters P, M vicinity of the leading edge. i.e. where the 
and Re,,. The required expression for yl is velocity boundary layer is relatively thin. 
readily shown to be The seriousness of neglecting the actual wall 

g[ = 0.564jP(l/M + l)Re$,. (36) 
temperature variation in the heat exchange 
analysis is illustrated in Fig. 5 which is a com- 

It is seen that the curves based upon the inviscid parison of the heat-transfer coefficients pre- 
model are in best agreement with thecorrespond- dieted by the analysis with those based on 

FIG. 4. Effect uf parameters M and P upon local heat exchange in laminar, cocurrent flow of 
constant property fluids. 
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-Refers to h, 

-Refers to b, 

FIG. 5. Comparison of local heat transfer coefficients for laminar, cocurrent flow of constant 
property fluids. 

uniform wall temperature and heat flux boundary 
conditions. The local heat-transfer coefficients 
for the uniform wall temperature and uniform 
heat flux boundary conditions in laminar flow 
are given respectively by 12) 

A comparison of heat fluxes are shown in 
Fig. 6. It is seen that as P becomes very large, 
implying that the plate is nearly adiabatic, 
the results based on equations (37) and (38) 

h,, = @332 (k/x) Pr-” Re$ (37) 

and 

h,, = 0453 (k/x) Pr* Re$. (38) 

The actual heat-transfer coefficient, h, is cal- 
culated from (13) and the quantity (hT,@ - h)/h 
is found to be independent of the stream. This 
is always the case in the cocurrent ~on~guration 
if the same type of flow exists on both sides of 
the plate. Referring to the physical interpreta- 
tions of P and M, it is seen that a uniform heat 
flux boundary condition is approached as M 
and P both become large and Re,, becomes 
small, while a uniform wall temperature con- 
dition is approached as M and P both become 
small and Re,, becomes large. This explains 
why in Fig. 5 the results based upon h,, are 
in better agreement with the present predictions 
than those based on hrx for the parameters 
M = P = l~and small Re,,. 

FIG. 6. Comparison of local heat transfer for laminar, 
cocurrent flow of constant property fluids. 

are the same as in the present analysis. At the 
other extreme, P approaching zero, heat flux 
predicted on the basis of equation (37) yields 
a better approximation, 
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The predictions of this work for the limiting 
case where one of the sides of the plate is 
maintained at a constant wall temperature were 
in excellent agreement with the similarity 
solution reported by Kuznetsov [S]. The present 
analysis and results are as valid as the con- 
ventional boundary layer theory from which the 
heat transfer coefficient h(x, 5). equation (18). 
was derived. The results are, strictly speaking, 
correct only when transverse heat conduction 
in the plate is much greater than the axial heat 
conduction. This condition is expected to be 
true when the wall temperature varies only 
moderately along the plate. 

The useful range of equations such as (37) 
and (38) in predicting the heat exchange 
between two streams separated by a plane wall 
can readily be determined for any combination 
of cocurrent, countercurrent, laminar or turbu- 
lent flow by an identical analysis. In a way of 
generalization, it should be remarked that the 
present analysis would also be applicable to 
mass transfer between two fluid streams when 
there is an interface resistance for diffusion 
between the phases. Diffusion of water through 
an evaporation-inhibiting film placed upon a 
body of water is a specific example of where 
the present analysis would be applicable. 

CONCLUSIONS 

The chief value of this analysis is in furthering 
the understanding of simple cocurrent and 
countercurrent flow heat (or mass) transfer 
processes and in enabling the interpretation of 
data acquired in simple laboratory heat transfer 
devices. Industrial heat exchange equipment is 
much more complex than the simple flow models 
considered here. 

The main conclusion of the paper is that the 

heat transfer coefficients in the individual 
streams are interdependent, and hence design 
predictions which neglect this interdependence 
could differ considerably from reality. The 
usefulness and the range of validity of local 
heat-transfer coefficients based on the uniform 
wall temperature and the uniform heat flux 
boundary conditions can easily be determined. 
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R&m&-On consid*re le probleme de l’kchange thermique entre deux courants fluides avec couche limite 
sCparts par une plaque plane. On prksente une analyse g&n&ale applicable aux 6coulements cocourants 
ou contre-courants, laminaires ou turbulents. Une solution exacte pour la distribution de tempkrature et le 
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transfert de chaleur le long de la plaque est obtenue darts le cas special d’un tcoulement a proprittts constantes 
incompressible et cocourant. Dans le CDS moins restrictif d’un tcoulement laminaire ou turbulent a pro- 
prittes constantes la temperature parittale et le flux de chaleur sont determines en utilisant la methode 
de superposition pour laquelle il est possible d’obtenir un degre de precision voulu. Dans le cas plus general 
de proprietes physiques variables on indique la solution aux differences times des equations de quantitt 
de mouvement et d’energie sous la forme de Von Mises. Finalement, on donne des resultats pour quelques 
exemples d’tcoulements cocourants a proprittes constantes et laminaires. 11 est mom& que les analyses 
qui negligent l’interaction thermique entre les courants fluides peuvent conduire a des erreurs importantes. 

THERMISCHE WECHSELWIRKUNG ZWEIER STRi)ME IN GRENZSCHICHTSTROMUNG 
AN EINER TRENNENDEN PLATTE 

Zusammenfassung-Es wird das Problem des Wiirmeaustausches zwischen zwei Fltlssigkeitsstriimen 
behandelt mit Grenzschichtstriimung an einer ebenen Platte, welche die beiden Striime trennt. Es wird 
eine allgemeine Betrachtungsweise dargelegt, die anwendbar ist auf Gleich- und Gegenstriimung auf 
den laminaren und turbulenten Fall. Ftlr den speziellen Fall konstanter Stoffeigenschaften bei zlhigkeits- 
freier Gleichstriimung wurde eine exakte Losung fth die Temperaturverteilung und den Warmetlbergang 
langs der Platte ermittelt. In dem weniger eingeschrlnkten Fall laminarer oder turbulenter StrBmung mit 
konstanten Stoffeigenschaften wurde die Wandtemperatur und der Warmestrom bestimmt mit Hilfe der 
Superpositionsmethode, womit Ergebnisse ausreiehender Genauigkeit zu erzielen sind. Fur den allgemein- 
sten Fall variabler Stoffwerte ist eine Lijsung der Impuls- und Energiegleichungen mit einer Differenzen- 
methode in der von-Mises-Form angegeben. Zum Schluss ist iiber einige aufschlussreiche Ergebnisse fir 
laminaren Gleichstrom mit konstanten Stoffwerten berichtet. Es wird gezeigt, dass Betrachtungen filr den 
Wlrmeaustausch, die die thermischen Wechselwirkungen zwischen den Fltlssigkeitsstromen vernachlls- 

sigen, ziemlich falsch sein konnen. 

TEIIJIOBOE BBAMMOAEHCTBME QBYX IIOTOKOB ~HfiKOCTM, 
PA3AEJIfiHHbIX IIJIACTHHO~ 

hiEOTtU&lisl-PaCCMaTpEiBaeTcR 3aAa'la TennOO6MeHa MeWAy J&ByMR IIOTOKaMPi WHfiKOCTSi, 

pa3AeJIiiHHbIMH IIJIOCKOfi nJIaCTHHOii. npOBOAIITCR 06mag aHaJIM3,npMMeHReMbIfi K CnyTHbIM 

HJIH BCTpe'IHbIM, JIaMIlHapHbIM ILTIA Typ6yJIeHTHbIM TeYeHHRM. nO.JIyseHO TOYHOe peIIreHHe 

J(JlH paCnpe~eJleHHfI TeMnepaTypbI M TennOO6MeHa BAOJlb nJIaCTMHbI J&JlH CnequanbHoro 

CJIyYaFl BCTpe4HOrO HeBR3KOrO Te'SeHMR C nOCTOf?HHbIMR CBO&CTBaMH. B 6onee 06qeM cnysae 

JlaMHHapHOrO HJICI Typ6yneHTHOrO Te'4eHHR C nOCTORHHbIMA CBOtiCTBaMH TeMnepaTypa 

CTeHKM II TenJIOB0i-k IIOTOK paCCWlTbIBaH)TCR n0 MeTORy HaJIO?KeHRR, KOTOpbIit MOXeT AaTb 

pe3yJIbTaTbI c Tpe6yeMOfi TOqHOCTbIO. &IA 6onee o6uero CnyqaR nepeMeHbIx (PBBkNeCKAX 

CBOliCTB peKOMeHAyeTCR KOHeqHO-pa3HOCTHOe peUleHIle ypaBHeHllti KOJIll'IeCTBa J(BWKeHMH II 

3HeprkiH B KO3@@4qHeHTaX @OH MHaeca. ki, HaKOHeU, npllB0ARTCJ-I Hal'mqHbIe AaHHbIe anfl 

CnyTHOrO JlaMMHapHOrO nOTOKa C nOCTORHHbIMkl @l3RYeCKMMH CBOfiCTBaMH. nOKa3aH0, 9TO 

aHaJIE13 TennOO6MeHa B npeHe6pelKeHMH TenJIOBbIM B3aHMOAeikTBHeM MeHcjJy IIOTOKaMA 

H(EIAKOCTI4 MOmeT AaTb Cepbk+3HyFJ OLIJH6Ky. 


