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THERMAL INTERACTION OF TWO STREAMS

IN BOUNDARY-LAYER FLOW SEPARATED BY A PLATE
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Abstract—The problem of heat exchange between two fluid streams in boundary layer flow separated
by a flat plate is considered. A general analysis applicable to cocurrent or countercurrent, laminar or
turbulent flow is presented. An exact solution for the temperature distribution and the heat transfer along
the plate is obtained for the special case of constant property, cocurrent, inviscid flow. In the less-réstrictive
case of constant property laminar or turbulent flow, the wall temperature and heat flux are predicted
using the method of superposition for which results of a desired degree of accuracy are possible. For the
most general case of variable physical properties the finite difference solution of the momentum and
energy equations in von Mises form is indicated. Finally, some illustrative results for cocurrent, constant
property, laminar flow in the streams are reported. It is shown that heat exchange analyses which neglect

the thermal interaction between the fluid streams could be in serious error.

NOMENCLATURE u, velocity in the x-direction ;
parameter defined as a/u,; v, velocity in the y-direction;
thickness of the plate; X, coordinate in the direction of flow;
constant in equation (18); x¥. dimensionless coordinate defined as
specific heat at constant pressure; Uy XV, for cocurrent flow x% = x¥
parameter defined as (k,a; *)/[k,a;? and for counterflow x = Re; | — x%;
+ kya;*] = (k,/b) (1/g,k,); x¥; location of the far side of the jth sub-
parameter defined as (k,/b)(k,a;? interval as measured in the i coordinate
+ kyaz )/ (kikaaz b): system;
parameter defined as g,(a,/a,)?; V. coordinate transverse to the direction
local heat-transfer coefficient of flow;
thermal conductivity; o, thermal diffusivity, k/pc,;
plate length ; B, exponent in equation (18);
parameter defined as s exponent in equation (18);
[Cok,Pr(u, vy )™/ C ik PPy o v2)™ ] 6, subinterval length ;
exponent in equation (18); & eddy diffusivity of heat;
exponent in equation (18); g,  eddy diffusivity of momentum;
parameter defined as ¢, parameter defined as (ox/u_)?;

Cilky/k,) Uy o iv )PPy 0. dimensionless temperature defined as

Prandtl number, uc,/k; (T, — L (T — Tho);
heat flux; I dynamic viscosity ;
local Reynolds number, u x/v; v, kinematic viscosity ;
temperature slope, d6;/d¢, on kth sub- . density ;
interval of plate; &, position along plate surface ;
temperature ; /A stream function ;
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T, shear stress.
Subscripts
i, refers to either stream 1 or 2;

L, based upon plate length ;

Q. based upon uniform heat flux boundary
condition;

T, based upon uniform

boundary condition;

based upon distance fromleading edge;

refers to the wall;

refers to stream 1;

refers to stream 2;

refers to the free stream.

temperature

K- E &

INTRODUCTION

ArpLICATIONS of heat exchange between two
fluid streams separated by a plane wall in
boundary layer flow are extremely common in
practice, yet fundamental analysis of the trans-
port process occurring in such situations has
received little attention. Basic models of heat
transfer across a solid wall consider only one
stream at a time, usually under the assumption
of a constant wall temperature or heat flux
and sometimes for a prescribed wall temperature
or heat flux [1, 2]. The primary purpose of this
paper is to examine the validity and accuracy
of such heat transfer predictions, i.e. those which
neglect the interaction between the streams.

Of particular concern for the analysis and
design of heat transfer equipment is the overall
heat-transfer coefficient which is the addition
in series of individual thermal resistances, each
measured or predicted in the absence of the
resistance in the other stream. The overall heat-
transfer coefficient is given by [3]

U = 1f1/h, + bik, + il ]} )

In essentially all practical heat transfer processes
the local heat-transfer coefficients can logically
be expected to vary with surface position. The
temperature at all points along the solid-fluid
interface must therefore also vary even though
the free stream temperatures remain constant.
Traditionally, the equipment desigher would
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select independent film coefficient correlations
hy{x} and h,(x), and then use equation (1) to
calculate the local heat flux

Q(x) = U(.X)(T} o TZoo) (2)

As will be shown later on, this procedure leads
to error since the correlations h,(x) and h,(x)
seldom (if ever) are applicable to the surface
temperature variations actually encountered in
the given piece of equipment. The main theme
running through the remaining sections of this
paper is that the traditional practice of neglect-
ing the interaction between the fluid streams
leads to error in engineering analysis and design,
and the work presented in this report is con-
cerned with ascertaining this error. (In mass-
transfer operations there is the analogous
practice of adding interphase resistances in
defining an overall mass-transfer coefficient.
Here too. as pointed out in [4].* such practice
is not always valid.)

The problem is formulated in general terms
and several fluid models are considered: an
inviscid fluid, a constant property viscous fluid.
and a variable property viscous fluid. For a
range of parameters of interest, heat-transfer
rates for the constant fluid property model are
compared to the corresponding rates obtained
by neglecting the interaction between the
streams.

A review of literature has failed to reveal any
studies dealing with the problem. The similarity
solution for laminar flow reported by Kuznetsov
[5] is a limiting case of the more general
problem investigated in this paper. The case
studied by Kuznetsov, where one surface of the
plate is maintained at a constant temperature,
corresponds physically to the case of infinitely
large heat-transfer coefficient on that surface.

PHYSICAL MODEL AND
FORMULATION OF PROBLEM
A schematic description of the system con-

* This reference was brought to the authors’ attention by
one of the reviewers.
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sisting of two streams, either of which is in
laminar or turbulent flow, is given in Fig. 1.
The streams designated by 1 and 2 are shown
in cocurrent flow in Fig. 1a and in counterflow
in Fig. 1b. The flow and heat transfer are assumed
to be steady, two dimensional, with negligible
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FiG. 1. Schematic diagram of physical models considered:
{a) Cocurrent flow; (b) Counterflow.

viscous heat dissipation and zero pressure
gradients. The initial velocity and temperature
for either stream are taken to be uniform, and
conduction in the plate is considered to be
one-dimensional, in the transverse direction
only. Further, assuming that the conventional
boundary layer approximations are applicable
to the present problem, the conservation equa-
tions of mass momentum and energy for either
stream are written respectively as

dpu)  Opw) _

ox; ay;

du; Ou; 0 ou;
pi (ui‘é;i + v 6—y‘> = Ey: l:(lli + Piam,i)a—yi:la “)

and

o o
PiCpi \ U ox, v; By,

0, 3
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) T,
= ‘5;1 l:(ki + PiCpitn, 1) E};J (5)

withi = 1,2. Theinitial. boundary. and interface
conditions are

u; = U, atx; = 0, (6a)
v, =u;=0aty =0, {6b)
U; = U, AS Y; = 0. {6¢c)
T = T,atx; =0, (7a)
T, = T,aty, =0 (7b)
T, - Toas8y, > oo, {7c)
and
kZ(aTZ/ayZ)kyz=O = Wkl(aTl'/ayl)LuzO
= (kD) [Tonlx) — Thu(xy)}  (7d)

In the last expression, x, = x,; for cocurrent
flow, and x, = (L — x,) for counterflow.

There is no possibility of obtaining a similarity
solution of the conservation equation (3)-(5)
with the boundary conditions (6, 7) because of
the interaction between the two streams. In
principle, a finite-difference numerical solution
can be obtained as indicated later in connection
with the variable property fluid model.

INVISCID CONSTANT PROPERTY FLOW MODEL

Considerable insight into the heat transfer
process can be obtained by assuming inviscid,
constant property flow in both streams. Physic-
ally, this means that the velocity boundary
layer is much thinner than the temperature
boundary layer. The temperature distribution
to a good approximation can then be predicted
on the assumption that in each fluid region, the
velocity is everywhere equal to the respective
free stream velocity. The boundary-layer equa-
tions (31(5) then simplify to the following
form:

3T,

ayz.iz 1.2

o

®)
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This model would apply to cases of heat
transfer where the Prandtl number is much less
than 1-0 [ 1, 6], however. the utility of the model
in the past has been that it yields a closed form
solution and predicts correct trends. It has been
demonstrated that in similar mass-transfer
problems the inviscid flow theory is equivalent
to the penetration film theory [7].

A mathematical problem analogous to the
one defined by equation (8) with the boundary
conditions (7) has already been solved. Omitting
all of the details, one can show that for the case
of cocurrent flow, the temperature distributions
in the two streams are given by [8]

k
0,(x1.y,) =4 {1 + (j’g‘2>
k19,

x [erf(y,:2(;) + explg,y: + 9i(})
x erfc (y,/2(;) + glCl]} 9)

and
B,5(x5, y) = gferfe(y,/20;) — explgay, + g503)
x erfc [(y2/20,) + 9221} (10)

By setting y, = y, = 0 in equations (9} and (10},
and making use of the identities ¢g,{; = g,{,
= g({ and ¢, = — g, = q. one obtains the local
wall heat flux

q/[k/b(Tre — Ty )] = exp(g*(*) erfc (gl) (11)
and the local wall temperature difference
0,(x,.0) — 0,(x,.0) = exp (g°)erfe (gl).  (12)

As expected, the dimensionless heat flux [the
left-hand side of (11)] is just equal to the dimen-
sionless temperature difference.

If the convective heat-transfer coefficient
h{x;,) is defined in the conventional way, i.e.

B = D
! [T(xn 0) iuo]
—(k; 57},/’6}’1')')«,. =0
= [1x,0) - T.]°

it follows from equations (9) and (10) that the

(13)
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heat-transfer coefficients are given by
hixy) =
(k,/b) exp (gi(?) erfc(g:{,)

p (14)
1—d |1 +{ 3222 exp (2P erfecg,l)
kig, .
and
: 22
hy(xy) = (k,./b) exp (g3{3) erfc (g,{ ;) (15)

d[1 — exp(g3(3) erfe (g:205)]

Examination of equations (14) and (15) shows
that the heat-transfer coefficients at the two
interfaces are affected by the thermal interaction
between the two streams as well as the wall
through the parameters d, g, ¢, and k,,/b.

VISCOUS CONSTANT PROPERTY FLOW MODEL

Assuming constant fluid properties and tem-
perature independent eddy diffusivity, the energy
equation (5), becomes linear, and consequently
the method of superposition can be used to
express the local wall heat flux. Derivation
of the superposition method is not presented
here (see [1] and [2]), but is should be noted
that the method is mathematicaily rigorous.
Thus, following the method of superposition,
wall heat fluxes in regions 1 and 2 are written
respectively as

0

|

dT,
me=hﬂxo(éﬁé

b

ilﬁx JAT,,,  (16)
and v i
dT.
ga{x;) = yhz(f- X3) (d_zw) dé
0
+ ¥ e ) AT (1)

where h(¢&, x;) denotes the heat-transfer co-
efficient at x; caused by a discontinuity in wall
temperature {finite-sized or infinitesimal) occur-
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ring at 0 < ¢ <x; and AT, ; denotes the
magnitude the jth finite-sized wall temperature
discontinuity. If the quantity [T;,, — T,,(x)] is
a continuous function of position for x > 0,
which is the situation in the present problem,
the summations in equations (16) and (17) are
identically zero. The following analysis employs
equations (16) and (17) to determine the tem-
perature and heat flux distributions along the
wall.

In many physically important problems h(&, x)
can be expressed as [9]

h(x, &) = Clk/x) ReZPr [1 — (&/x))F (18)

where the constants C, m, n, y and f are given in
Table 1 for several flow situations.

Table 1. Constants used in equation (18) for various flow
situations [9]
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yields

— M e |
o [1 = (E/x8)7P (d6,/de) d¢
- s [1— ] @0,/ de  @2)
and .
[P/ecty! ™1 [ [1 = @ty
« (d0,/dE)dE = B(x3) — 0,01 (23)

It is noted that for cocurrent flow x% = x¥ and
for counterflow x3 = Re; ; — x}.

Solution of equations (22) and (23) is accom-
plished in the following manner. The interval
0 < x¥ < Re,, isbrokenupinto N subintervals
of length o, which are sufficiently small, so
that on every subinterval the derivatives d8,/dé
may be taken as constants ([1], p. 182). It is
clear that such an approximation becomes in-

C y B m n . . ..
creasingly accurate as subinterval size is reduced.
(1) Laminar flow, Pr> 1~ 0332 3 -3 3 3  Lettings; , denote d6,/d¢ on the kth subinterval,
(2) Turbulent flow, Pr>1 0029 & -4 ¢ 1 ’
(3) Laminar flow of liquid
metals, u = u,, 0s64 1 -3 1+ % Y
5 5 8, 1te8 e B
[+ O *1+— Op - T O e pe— O ] e
o . . . X Ll
Substituting equation (18) into equations \RANRAN AV VN ; o
(16) and (17), and realizing that wall temperature L X
is continuous, we have that Xe. o

qi(x;) = Cy(ky/xy) Rey! Pryt !

0

< [1 = @21 @Tdde (19)
and
0sx2) = Calkafx;) Ret Pry |

« [l - @) @Tdde. (0)

Substituting equations (19) and (20) into the
interface conditions (7d) and introducing the
dimensionless variables

x3 = (U;0X2/V1);
- Ew)/(le - T200)

Xt = (U3 X1/v1);

6 = (T;, (1)

FiG. 2. Illustration of the notation used in the constant
fluid property analysis.

(k = 1,..., N), equations (22) and (23) can then
be rewritten as 2N linear algebraic equation
whose solution yields the 2N quantities s;
Referring to Fig. 2 for the indexing system, the
two algebraic equations for the position x¥ ; are
thus

x5k

t
—[M(xt ) i)' ] Y sk
k=q x5, k5,
x [1 — (&/x3 )P de

J x1, k
=X J D-@xr)Yde @4

'
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and

X 3

S
e [ = (Exrynde
k4,

Xtk —

[Pixt) ™

L
z,k(sk - Zx 51,k5k -1

k=

25)

j
1Y s
K=1
t
S

With s, « known, the wall temperature at the
general position x¥; is given by
j
0,(x% ) =1+ kz S1, k0% (26a)
=1
and
t
0,(x3.,) = kZ 5310k (26b)
=q

In equations (24)26) t = j, g = 1, and x% ; =

x% ; for cocurrent flow, while for counterflow:

t=j+1, g=N and x%;,, = Re; | — x¥ ,
Heat flux is obtained from the dimensionless
form of equation (7d).

By assuming that the flow is cocurrent and
that the same type of flow exists on each side
of the plate, it can be shown from equations
(24) and (25) that

R. VISKANTA and M. ABRAMS

VARIABLE PROPERTY VISCOUS FLOW MODEL
When thermophysical properties are state
dependent, solution to the problem can only be
obtained by solving simultaneously equations
(3)-(5). Asafirststep in such a solution, equations
(4) and (5) are simplified by employing the von
Mises transformation [10] obtain respectively

ou; 1 ¢ ou;
<6xi>-/1.~ = ;ga‘l//‘ [Pi (i + pigm, ) u; 5—'/’i>xli (29)

and

0T, B 1 0
ox; v - Cpipizao o
oT;
l:pi(ki + Picp,-gn,i)uigl;il]m (30)

where i, is the stream function, taken to be zero
at the plate surfaces, and defined so that

_—pico%
o Oxy

=&°3% and
pi 0y

i i

i—1 xk

M(P/x*'™™) Y 5,4 *j [1—(&/x)PPdE + 0,(x%,) — Ox(x* )

k=1 Xje -1

27)

§1,; =

X

6, — M@+ Pt | [ — (&/x5y] dg)

*
Xj-

and
(28)

From a computational standpoint, the solution
is simpler for the cocurrent than for the counter-
flow flow configuration. The simplification is
due to the fact that the slopes s, , can be com-
puted recursively, i.e. starting at j = 1 with the
conditions 0;(x¥) = 1 and 0,(x}) = 0, the s, ;
can be calculated for all successive j’s, while a
matrix inversion is required when equations (24)
and (25) are used for counterflow.

Szvj = _Sl.jr/M‘

It is noted that the continuity equation (3)
is now automatically satisfied. Equations (29)
and (30) are subject to the following boundary
and interface conditions:

asy;, » oo: Tx,¥) - T,

and  ux, ¥;) > ui.  (32a)
at xi = 0: T;(O" l//z) - T;ms

and  u{0, ¥,) = u;. (32b)
aty; = 0: Tx;,0) = T,(x) (32¢)
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The interface conditions corresponding to equa-
tion (7d) have to be treated carefully, since,
under the von Mises transformation, the con-
tinuity of the conductive fluxes, embodied in
the first part of equation (7d) and expressed as

_ Qgﬁ(k1ﬂl)|w1=o (u ﬁ)
Pro (k2p2)|!112=0 ! o,

¥1=0

oT,
= (“2 a/zz)

is seen to be trivial because

(33)

W2=0

#1ly, =0 = tafy,=0 = 0.

This difficulty is removed however, by applying
L’ Hépital’s rule with the result

_ P2 (k1p1)]y, =0

P Ty1(X1) w2 ﬂ
Pio (kzpz)lwﬁo

" a2 O,

¥2=0

0T,

=35 (34)

‘”2:0‘

The additional requirement, corresponding to
the latter part of equation (7d), is transformed
into

(k/b) [ Tou(x2) — Tyulx 1)]

1 oT,
= — —— kypUy -t
1P 16’#1

1o

¥1=0

1 .
- ““‘(kxpx)‘w, —o X lim
Pleo W-0

[ul(xl,wl)[n(x;wo - Tx(xlv(”]]. (35)

On physical grounds, a limit of the bracketed
quantity must exist if the rate of heat transfer at
the wall is finite.

Equations (29)}-(35) completely define the
flow and heat transfer in regions 1 and 2. A
numerical finite difference solution of an ana-
logous one-region problem has been obtained
in [11].
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RESULTS AND DISCUSSION

As an illustration, the wall temperature and
heat flux variation along the plate are predicted
for constant property, cocurrent, laminar flow
of streams 1 and 2 using equations (27) and (28).
The appropriate constants C, m, n, ff and 7 for
fluids with 1 < Pr < 15 are given in Table 1.
Inspection of equations {22) and (23) reveals
that the wall temperature distribution depends
on the dimensionless parameters M. P and x}.
Physically, the parameter M is a measure
of the heat-transfer conductance of stream 2
compared to stream 1, and the parameter P is
a measure of the heat-transfer conductance of
stream 1 compared with that of the plate. The
dimensionless distance x¥ is just the local
Reynolds number in stream 1 based on x, as
the characteristic dimension.

Typical variation of the local wall tempera-
ture is shown in Fig. 3. It is noted that for any
value of the parameter M, a decrease in para-
meter P and/or an increase in Re, results in
a definite limit of 8,,. It can be proven that
this limit is given by 1/(1 + M).

The variation of the dimensionless local
heat flux is shown in Fig. 4. For fixed parameters
P and M heat-transfer rate decreases as Re,,
is increased, an expected result since the laminar
boundary layer becomes thicker and increases
the resistance to heat transfer. All curves in
Fig. 4 approach unity as Re,, — 0. This behavior
is a consequence of neglecting axial heat con-
duction in the energy equation (5).

For a given P and Re,,, an increase in M
results in an increased heat flux. Such behavior
is expected considering the physical significance
of that parameter. However, when M is already
large, most of the resistance to heat transfer is
in stream 1 and the plate so that further increase
in M has little effect upon heat transfer. This
is demonstrated in Fig. 4 by the closeness of
the results for M = 10 and 100. Furthermore,
from the physical interpretation of P, it is also
evident that large P implies large heat transfer.
The two dashed curves of Fig. 4, representing
heat transfer predicted by the inviscid flow
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Fi. 3. Local wall temperatures for constant property fluids in laminar, cocurrent flow.

model, are obtained from equation (11) after
expressing g{ in terms of the parameters P, M
and Re, . The required expression for g{ is

readily shown to be
gl = 0'564/P(1/M + 1)Re§§‘. (36)

It is seen that the curves based upon the inviscid
model arein best agreement with the correspond-

(]

ing viscous results when P is large and in the
vicinity of the leading edge, ie. where the
velocity boundary layer is relatively thin.

The seriousness of neglecting the actual wall
temperature variation in the heat exchange
analysis is illustrated in Fig. 5 which is a com-
parison of the heat-transfer coefficients pre-
dicted by the analysis with those based on

o0t

TSI

T

tidiiad fendededtinad

00 b

FI lltlll‘;

o 10’

10°
Re,

F1G. 4. Effect of parameters M and P upon local heat exchange in laminar, cocurrent flow of
constant property fluids.
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FiG. 5. Comparison of local heat transfer coefficients for laminar, cocurrent flow of constant
property fluids.

uniform wall temperature and heat flux boundary
conditions. The local heat-transfer coefficients
for the uniform wall temperature and uniform
heat flux boundary conditions in laminar flow
are given respectively by [2]

hp, = 0332 (k/x) Pr¥ Re} 37

and
ho, = 0453 (k/x) Pr¥ Re?. (38)

The actual heat-transfer coefficient, h, is cal-
culated from (13), and the quantity (hy o, — h)/h
is found to be independent of the stream. This
is always the case in the cocurrent configuration
if the same type of flow exists on both sides of
the plate. Referring to the physical interpreta-
tions of P and M, it is seen that a uniform heat
flux boundary condition is approached as M
and P both become large and Re,, becomes
small, while a uniform wall temperature con-
dition is approached as M and P both become
small and Re,, becomes large. This explains
why in Fig. 5 the results based upon hy, are
in better agreement with the present predictions
than those based on hy, for the parameters
M = P = 100 and small Re, .

A comparison of heat fluxes are shown in
Fig. 6. It is seen that as P becomes very large,
implying that the plate is nearly adiabatic,
the results based on equations (37) and (38)

—Z x 100
Q

9r

1 . N 1 i 0 v
O N b N L
et P —1

10¢

F16. 6. Comparison of local heat transfer for laminar,
cocurrent flow of constant property fluids.

are the same as in the present analysis. At the
other extreme, P approaching zero, heat flux
predicted on the basis of equation (37) yields
a better approximation.
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The predictions of this work for the limiting
case where one of the sides of the plate is
maintained at a constant wall temperature were
in excellent agreement with the similarity
solution reported by Kuznetsov [ 5]. The present
analysis and results are as valid as the con-
ventional boundary layer theory from which the
heat transfer coefficient h(x, £), equation (18),
was derived. The results are, strictly speaking,
correct only when transverse heat conduction
in the plate is much greater than the axial heat
conduction. This condition is expected to be
true when the wall temperature varies only
moderately along the plate.

The useful range of equations such as (37)
and (38) in predicting the heat exchange
between two streams separated by a plane wall
can readily be determined for any combination
of cocurrent, countercurrent, laminar or turbu-
lent flow by an identical analysis. In a way of
generalization, it should be remarked that the
present analysis would also be applicable to
mass transfer between two fluid streams when
there is an interface resistance for diffusion
between the phases. Diffusion of water through
an evaporation-inhibiting film placed upon a
body of water is a specific example of where
the present analysis would be applicable.

CONCLUSIONS

The chief value of this analysis is in furthering
the understanding of simple cocurrent and
countercurrent flow heat (or mass) transfer
processes and in enabling the interpretation of
data acquired in simple laboratory heat transfer
devices. Industrial heat exchange equipment is
much more complex than the simple flow models
considered here.

The main conclusion of the paper is that the

R. VISKANTA and M. ABRAMS

heat transfer coefficients in the individual
streams are interdependent, and hence design
predictions which neglect this interdependence
could differ considerably from reality. The
usefulness and the range of validity of local
heat-transfer coefficients based on the uniform
wall temperature and the uniform heat flux
boundary conditions can easily be determined.
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INTERACTION THERMIQUE DE DEUX ECOULEMENTS AVEC COUCHE LIMITE SEPARES
PAR UNE PLAQUE

Résumé— On considére le probléme de 1’échange thermique entre deux courants fluides avec couche limite
séparés par une plaque plane. On présente une analyse générale applicable aux écoulements cocourants
ou contre-courants, laminaires ou turbulents. Une solution exacte pour la distribution de température et le
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transfert de chaleur le long de la plaque est obtenue dans le cas spécial d’un écoulement 4 propriétés constantes
incompressible et cocourant. Dans le cas moins restrictif d’un écoulement laminaire ou turbulent a pro-
priétés constantes la température pariétale et le flux de chaleur sont déterminés en utilisant la méthode
de superposition pour laquelle il est possible d’obtenir un degré de précision voulu. Dans le cas plus général
de propriétés physiques variables on indique la solution aux différences finies des équations de quantité
de mouvement et d’énergie sous la forme de Von Mises. Finalement, on donne des résultats pour quelques
exemples d’écoulements cocourants & propriétés constantes et laminaires. Il est montré que les analyses
qui négligent I'interaction thermique entre les courants fluides peuvent conduire 4 des erreurs importantes.

THERMISCHE WECHSELWIRKUNG ZWEIER STROME IN GRENZSCHICHTSTROMUNG
AN EINER TRENNENDEN PLATTE

Zusammenfassung—Es wird das Problem des Wirmeaustausches zwischen zwei Fliissigkeitsstromen
behandelt mit Grenzschichtstrémung an einer ebenen Platte, welche die beiden Strome trennt. Es wird
eine allgemeine Betrachtungsweise dargelegt, die anwendbar ist auf Gleich- und Gegenstrémung, auf
den laminaren und turbulenten Fall. Fiir den speziellen Fall konstanter Stoffeigenschaften bei zihigkeits-
freier Gleichstrémung wurde eine exakte Losung fiir die Temperaturverteilung und den Warmeiibergang
langs der Platte ermittelt. In dem weniger eingeschriankten Fall laminarer oder turbulenter Strémung mit
konstanten Stoffeigenschaften wurde die Wandtemperatur und der Wirmestrom bestimmt mit Hilfe der
Superpositionsmethode, womit Ergebnisse ausreichender Genauigkeit zu erzielen sind. Fiir den allgemein-
sten Fall variabler Stoffwerte ist eine Losung der Impuls- und Energiegleichungen mit einer Differenzen-
methode in der von-Mises-Form angegeben. Zum Schluss ist iiber einige aufschlussreiche Ergebnisse fiir
laminaren Gleichstrom mit konstanten Stoffwerten berichtet. Es wird gezeigt, dass Betrachtungen fir den
Wirmeaustausch, die die thermischen Wechselwirkungen zwischen den Fliissigkeitsstromen vernachlis-
sigen, ziemlich falsch sein konnen.

TEIIJIOBOE B3AUMOJAENCTBUE [IBYX IIOTOKOB HUJKOCTH,
PABEJEHHLIX MJIACTUHON

Ansoranua—PaccmaTpuBaerca 3ajada TemIooGMEeHA MEAY NABYMA IMOTOKAMH IKUTKOCTH,
paspenéHHbIMU NI0CKON maacTuHoli. [IpoBoguTes o0mut ananyus, OIpUMeHAEMbIH K CIIYTHBIM
MJIN BCTPEYHBIM, JIAMMHADHBLIM UJM TYpPOYJIeHTHHIM TeyeHUAM. IONyY€HO TOYHOE pelleHHe
A pacmpefesieHNA TeMIEepaTypel ¥ TenmooOMeHa BHOJb MNJACTUHBL JJA CHELUAJBHOrO
CJIyYasA BCTPEYHOTO HEBABKOTO TEYEHUA C NOCTOAHHBIMU cBolicTBaMu. B Gomee ofuem cnyvae
JIAMHHAPHOr0 MM TYpOYyJIEHTHOTO TEYEHMA ¢ TIOCTOAHHBIMUM CBOCTBAMM TeMIeparypa
CTEHKM M TEIUIOBOM MOTOK PACCYMTHIBAIOTCA MO METO[y HAJIOMEeHHA, KOTOPHIH MOXeT naTh
pe3yabTaTH ¢ Tpebyemoit TouHOCTRIO. [InA Golee OGILIEro ciyyas TEpeMEHHIX (PUBMYECKUX
CBOMCTB PEeKOMEHNYeTCA KOHEYHO-PA3HOCTHOE pellieHHe YPABHEHUH KOJU4ECTBA [BUMEHUA U
sHepruu B koadpunmentax ¢on Museca. U, HaKOHel|, NPUBOJATCA HATJIAMHLE AAHHBIE A
CIYTHOTO NAMMHAPHOTO MOTOKA C MOCTOAHHBIMM (PU3HYeCKUMHU cBoificTBamu. Ilokazano, uto
aHanm3 Temynoo0MeHa B IpeHeOpesKeHUM TeMJIOBHIM B3AUMOMEHCTBUEM MEMOY NOTOKAMU
HUJIKOCTH MOMET AaTh CephE3HYI0 OIINGKY.
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